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AN ANALYSIS OF LAMINAR FILM BOILING WITH
VARIABLE PROPERTIES
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Abstract—An analysis is made of stable, laminar, free convection, film boiling from isothermal vertical
plates and horizontal cylinders surrounded by a saturated liquid. The mathematical techniques of
boundary-layer theory are used and the boundary-layer equations are reduced to ordinary differential
equations by means of a transformation similar to that used in free convection and condensation. The
equations are solved for compressible flow with variable specific heat. Numerical results are presented
for near critical water at 2800 and 3100 Lb/in? with wall-to-liquid temperature differences of 250, 500
and 1000°F. Results for heat transfer, velocity distribution and temperature distribution are included
and compared to solutions obtained by assuming constant properties.

Résumé—Une analyse est faite du film laminaire, de convection libre en régime stable et 4 1’ébullition
sur des plaques isothermes verticales et des cylindres horizontaux recouverts d’un liquide saturé. Les
techniques mathématiques de la théorie de la couche limite sont utilisées et les équations de 1a couche
limite sont réduites 4 des équations différentielles ordinaires grace A une transformation analogue a
celle utilisée pour la convection libre et 1a condensation. Les équations sont résolues pour un écoulement
compressible avec chaleur spécifique variable. Des résultats numériques sont présentés pour I’eau au
voisinage du point critique & 2800 et 3100 1b/in? avec des différences de température entre paroi et
liquide de 250, 500, 1000°F. Des résultats sur le transfert de chaleur, la distribuiton des vitesses et des
températures sont également donnés et comparés aux solutions obtenues en supposant les propriétés
physiques constantes.

Zusammenfassung—Es wird das stabile laminare Filmsieden bei freier Konvektion an einer isothermen
senkrechten Wand oder an horizontalen Zylindern, die von gesittigter Flilssigkeit umgeben sind,
untersucht. Hierzu werden die Methoden der Grenzschichttheorie angewendet und die Grenz-
schichtgleichungen in gewohnliche Differentialgleichungen umgewandelt mit Hilfe einer Transforma-
tion, die dhnlich der fiir freie Konvektion und Kondensation ist. Die Gleichungen werden fiir kom-
pressible Fliissigkeit mit verdnderlicher spezifischer Wirme geldst. Numerische Ergebnisse werden
fur Wasser in der Nihe des kritischen Punktes bei 193 und 214 bar mitgeteilt und bei Temperatur-
differenzen zwischen Wand und Fliissigkeit von 139, 278 und 555 grd. Ferner werden die Ergebnisse
fir den Wirmeiibergang, die Geschwindigkeitsverteilung und die Temperaturverteilung angegeben
und diese mit den Losungen fiir konstante Stoffwerte verglichen.

Andoramua—/laéTcA aHamn3 yCTOHYMBOTO JTAMMHAPHOIO ITEHOYHOI'0 KUIEHUA B YCJIOBUAX
cBOBOAHON KOHBEKLMN HA M30TEPMHYECKUX BEPTHHKAIBHHIX IIACTUHAX M [OPU3OHTAIBHBIX
LMAMHApPAX, OKPYMeHHBIX HACHIIEHHOH KHUAKocThlo. lIcmonbayeTca MaremaTmuecKmit
anmapaT TeopWM IOTPAHNMYHOrO CJOA, @ YPaBHEHNA IIOTPAHMYHOTO CJOA CBOJATCA K
o0biynbM AuPepeHNaNbHEM YPaBHEeHUAM MyTéM npeoGpas3oBanmit, aHAJIOTHYHHX Tpeolpa-
30BAHUAM, MPHUMeHAEMHM B 3afadyaX cBOOOXHON KOHBEKIMM U HKOHAEHCAUMM. Y paBHEHHA
PemanTed A CARIMAeMoro NOTOKA C NepeMeHHO yRedbHolt TemioéMkocThio. IlpuBogATcsa
YUCTACHHEIE Pe3YJbTATH A OKOJO KPUTHYECKOTO COCTOAHUA BOJB! NPH JABIICHUAX, PABHBIX
2800 u 3100 QyHT/KB. HIOWM. N PABHOCTAX TEMIEPATYP MEMKIY CTEHKOM M HKUIKOCTHIO B
250, 500 nm 1000°F. IlpneeneHH TakKie pesyibTaTH IO TemJdoo0MeHY, pacnpefeeHUIo
CKOPOCTelf 1 TeMmepaTryp B CpPaBHeHMM C PpelleHWAMH, NOJNY4YeHHHIMH B NPe0OrKeHNI
MOCTOAHCTBA XaPaKTePHCTHK.

* Instructor, School of Mechanical Engineering. Purdue University.
t Professor of Mechanical Engineering. Purdue University, Lafayette, Indiana.

325



326

NOMENCLATURE
a, b, ¢, d = dimensionless constants;
¢ = dimensional constant,
glpL — psat) psat]¥* 1
Cs = dimensionless constant,
[rzg(PL — peat) Psat] Vs
wgs ’
Cyp = constant pressure specific heat
(B.t.u./Ib °F);*
f = function of B defined by equation
(27);
g g = acceleration or acceleration vector
due to gravity, 4-17 x 108ft/hr?;
2o = dimensional constant,
4-17 x 10%tlb/Lb hr?;
G = body force per unit volume
(Lb/ft3);*
A = function of B defined by equation
(27);
Bsg = enthalpy of evaporation
(B.t.u./lb);
h == local convection heat transfer
coefficient (B.t.u./ft2 hr °F);
k = thermal conductivity
(B.t.u./ft hr °F);
L = length of vertical plate (ft);
Nny,» = Nusselt number based on length
A;
N, = Prandtl number
p = function of ¢, dimensionless;
P = pressure (Lb/ft?);
q = local heat transfer rate
(B.t.u./hr ft2);
q" = heat generation per unit volume
(B.t.u./ft3hr);
0 = total heat transferred (B.t.u./hr);
r = cylinder radius (ft);
T = temperature (°F);
Tsat = saturation temperature (°F);
T = wall temperature (°F);
t = dimensionless temperature de-
fined by equation (27);
u = velocity component in the x-direc-
tion (ft/hr);
v = velocity component in the

y-direction (ft/hr);

* The abbreviaiion for the pound mass is 1b, and for
pound force is Lb throughout the paper.
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v = velocity vector (ft/hr);
x = co-ordinate along surface (ft);
y = co-ordinate normal to surface
(fo);
B = angular co-ordinate (rad);
8 = thickness of vapor film (ft);
4 = dimensionless function defined
by equation (16);
] = dimensionless independent vari-
able ¢, y/x14,
g = dimensionless temperature,
(T — Tsat)/(Tw — Teat);
6 = (Ty — Twat) (°F);
I = viscosity (Lb hr/ft%);
3 = dimensionless independent vari-
able defined by equation (27):
p = vapor density (Ib/ft?);
PL = liquid density (1b/{t?);
Psat = saturated vapor density (I1b/ft?):
T = time (hr);
¢ = dimensionless independent vari-
able, ¢, y/r;
v = stream function (ft¥/hr);
b4 = dimensionless stream function
defined by equation (24);
\Y = vector operator used for, say, the
gradient of a scalar;
V2 = Laplace operator.
Subscripts
cp = constant properties;
tp = vertical plate;
c =horizontal cylinder;
x = x-direction.
INTRODUCTION
ALTHOUGH the first observation of the

phenomenon of film boiling was made in 1746,
an analytical treatment was not suggested until
almost two centuries later. In 1941, Colburn [1]
suggested that Nusselt’s [2] theory on laminar
film condensation could be modified for the case
of laminar film boiling. In 1950, Bromley [3]
presented a model for the case of stable laminar
film boiling on the outside of a horizontal
cylinder. By assuming an isothermal wall, a
saturated liquid, pure conduction heat transfer
across the film and by neglecting inertia in the
vapor layer, he derived an expression for the
convection coefficient. The free convection heat
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transfer was expressed in terms of a Nusselt
number as

_ [8(pL — p) pD?hy V4
NNU,D =< [ k[»‘rg(]@ :| (1)

where the properties were evaluated at an
average temperature. The constant ¢ depended
upon the boundary conditions at the interface.
For zero velocity at the interface ¢ was 0-512, for
zero shear stress at the interface ¢ was 0-724.
This latter condition is the boundary condition
considered in the case of laminar film condensa-
tion, the former is usually associated with film
boiling. This gives the extremes between which
the actual case lies in film boiling and also
indicates how liquid movement can influence the
results,

In 1952, Bromley [4] modified the theory to
take into account the superheating of the vapor
film. Cess [5] arrived at an expression similar
to equation (1) by assuming a temperature
profile in the vapor layer and by considering the
effect of the liquid-vapor interfacial shear
stress. Chang [6] has presented a wave theory for
film boiling. In 1958, Sparrow and Gregg [7]
proposed an exact analysis of laminar film
condensation with constant properties which is
similar to that used in the present paper for
laminar film boiling. Both investigations were
performed independently of each other.

In the theory. presented to date for stable,
laminar film boiling on isothermal surfaces, no
attempt has been made to consider variable
properties. In this paper the writers will show
how the severe variations of specific heat and
density with temperature near the critical
pressure can be exactly considered by treating
film boiling with boundary-layer theory. The
complete boundary-layer equations will be
solved, and the results obtained will be com-
pared with the approximate theories available.
Radiation will not be considered in order to
investigate only the variable property effects on
convection.

FUNDAMENTAL EQUATIONS

The fundamental equations which express the
laws of conservation for mass, momentum and
energy for stable, laminar, free convection,
film boiling were written as follows:

op

o+ (V) =0 @

p dVv _oorv o )

P d‘T—;AVV VP—I—G+§V(V V) (3
dar W

Pl g7 = kv*T + ¢ C)

Equations (2) through (4) were valid for com-
pressible flow with variable specific heat. Vis-
cosity and thermal conductivity were assumed
constant since their variation was one-half order
of magnitude, or more, less than the variation
in density and specific heat for the situations
considered in this paper.

In order to solve these equations, some addi-
tional assumptions were necessary. Only steady,
two-dimensional boundary-layer flow was con-
sidered as shown in Fig. 1A; thus equations (2)
through (4) became

pu) | O(pv)

ox T ey 0 ©)

p [ Ou ou\  u

2 (%Jr va—y) —uza— [VPL+ (Gl ©
or oT 2T

pcﬂ(ug);—{—v@):kaT}2 Q)

where the heat generation per unit volume was
assumed to be zero. Schlichting [8] shows that
these equations are also valid for the case of a
cylinder, as shown in Fig. 1B, if the boundary
layer thickness is small compared to the cylinder
radius.

An isothermal wall was assumed as well as a
saturated liquid which was everywhere at rest;
thus, the boundary conditions for the above
equations became

} ®

u=v=0,7T=7T,
An additjonal condition was required because the
film thickness 8 was not known a priori. This was
obtained by noting that all the heat transferred
by conduction at the liquid-vapor interface was
used to vaporize liquid; that is
°oT

‘I:Psathng:—k‘g}j

y=0

u=0,T = Tt y=23

y=8 0
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Equations (5) through (7) with conditions given
by equations (8) and (9) are the simplified
equations which were solved for the case of film
boiling from a vertical plate and a horizontal
cylinder.

The first step in the solution of equations (5)
through (9) was the introduction of a stream
function; that is

o o
oy o

This substitution eliminated equation (5) and
equations (6) and (7) became

(10)

PU = Psat

o P o 0% pgo
By xdy x5 Pt {[VP]. — [G]w}
_ M8 T
psat 0)°
1 8p fo\* 1 &) o @
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The boundary conditions in equation (8)
became
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Fic. 1. Physical model and co-ordinate system for:
A, plane wall and B, horizontal cylinder
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It remained to reduce these to ordinary
differential equations to facilitate solution.

REDUCTION OF EQUATIONS

Equations (11), (12) and (13) were simplified
by expressing the pressure gradient and body
force in terms of specific weights and by intro-
ducing a similarity transformation which re-
duced the partial to ordinary differential
equations. These steps will now be described.
Plane vertical wall

The pressure gradient in the x-direction was
the hydrostatic pressure gradient

[vPl, = — £ (14)

and body force in the x-direction was the gravity
force on the vapor,

g
- —p
8o

Gl = (15)

The sum of the pressure gradient and body
force

gl — p)
8o
gave the bouyant force. By introducing a similar-

ity transformation, equations (11) and (12)
were made ordinary. To this end

Ly )
7= O L
| (16)
p = 4580 o () |
Peat J
where
_ g(PL — Psa,t) Psat 4
N

were introduced where n was a new independent
variable. Also, at a given pressure, density was a
function only of temperature thus

_dp T 2p _ dp oT

dr B’ 3y AT &y
Introducing the above in equations (11) and (12)
there resulted

op

Iy (18)
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v 3 — 2@y+“i__—”P—ﬂ
(PL e Psat) Psat
L% g+ La9)
p df 1
n 2(dp\r] 14, J
R e A L
9" 43 i‘kgﬂ e, 10 =0 (20)

where the primes on { and 8 represent differen-
tiation with respect to n. The boundary condi-
tions on this set of equations were obtained
from equations (9) and (13) as:

(=0 =0,0=1 v;:O}
3}‘g0 hfa;

J @
k @™

The simultaneous solution of equations (19} and
(20) with the boundary conditions above,
completely described the temperature and velo-
city distributions and also the heat trapsfer for
stable, laminar free convection film boiling
where radiation is not important.

It should be noted that the results for the
vertical plate can also be applied to the vertical
cylinder if §/r is less than 0-03. This should
introduce an error of about 1 per cent in the
film thickness according to Greenburg [9].

5'2038'20,0’:‘“‘—“-~

Horizontal cylinder
The pressure gradient in the x-direction was
the hydrostatic pressure gradient again

[VPl, = — £ pp sin * 22
&o r
and the body force in the x-direction
=— & ,sin”
(Gl = 2 psin P 23)

was the gravity force on the vapor.

The first step in reducing equations (11) and
(12) to ordinary differential equations was to
introduce the following

. ]
B ==
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w o ¥ Pt
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cy = [" 3g(pr — prat) Psatrf 4
2 #2&% J
In this way, equations (11) and (12) became
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To simplify these, the following substitutions

were used
= ¢ h(B)

(B, ) = p(&) f(B)
8B, ¢) = 1(§)

and then equations (25) and (26) became
PRy 4 pp” R} — (PSR R+

. (b—90)p .
I o= ) e P
1 9p

= o b fop’ + W} +
{ = ( )};“”' J

i e, prf =0

@n

> (28)

(29)
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where primes on ¢ and p represent differentiation
with respect to ¢ and primes on fand 4 represent
differentiation with respect to 8. Now, when

J'(B) = ah(B)
SHBRBH'(B) = b sin B
JBRBS(B) = csin B

SBRB) = dsin B

equations (28) and (29) could be written as

pld+ppc— (p)Rb+c}+ )
(p—p)p
(PL - Psat) Psat

10
:‘f‘)g‘f {epp” + 2p'd} +

~

r 30)

<

r (3D

1, [&% 2 [op\? J
e o~ )
"+ai‘§° cppt' =0 (32)

Fortunately, equations (30) were solved by
Hermann [10] who gives graphs of /i and f/ vs. 8,
and values for the constants as follows: a = 3,
b= —1,c=3andd=1.

Finally, using values for the constants a
through d, equations (31) and (32) became

(pr—p)p
1t 3 1t _ 2 ’ 2 [ A A
p’+ 3pp (P')? + ( prpm) oo 1
P , dp ,, L
* ' ’ ’ ’ - 3
dtt[3pp+2p]+ Pttt (33)

ol

"+ 3 i‘ii" e, pt' =0 (34)

The boundary conditions on equations (33) and
(34) were

p=p =0,t=1 £E=01

35
3 r&o hfg ( )

pP=0,t=0t'=—-32200p ¢£=2¢

k6 |

Thus it is seen that these are the same differential
equations and boundary conditions which were
set up for the case of the flat plate.
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Relation between heat transfer on cylinder and on
plate

Since the reduced differential equations were
the same for the plate and cylinder, it was
expected that the heat transfer for each was
related.

For the vertical plate the local wall heat
transfer could be expressed as

oT
Tu :_k(ay)w:

and an average heat-transfer coefficient was
found by integrating the local coefficient over
the entire plate. Thus

1 (& deé
hd -1/4 .
@Ljok@cl(dn)wx dx

do 4
=k & (a;;)w 3L

The heat transfer may also be expressed in terms
of an average Nusselt number as

4 de
NNu,L — 3[43/4 &1 (aﬁ)

We now consider the horizontal cylinder. In
the case of the horizontal cylinder the wall heat
flux could be expressed as

oT c, (0
o= k(). = =40 (),

— k6O ;25(,3) (g;): —h, @

de
— e}
kO cx (dﬂ)u
= — h,, O (36)

(h vp)an

37

(38)

(39)

and an average heat-transfer coefficient was
found by integrating the local coefficient over the
entire cylinder. Thus

1 d¢
howss = g, || 0% 7)1 Pr o8

(19 ¢,
= (G, @

which followed from Hermann’s [10] graphical
integration where

rh(ﬁ) 48 = 191 (41)
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The heat transfer was expressed in terms of an
average Nusselt number as

dt
[Nu,p = 1025 ¢, ( a‘g)w 42

The similarity between equations (38) and (42)
is now apparent.

For a given fluid surrounding a plate or cylin-
der at the same pressure and with the same wall to
fluid temperature difference it followed that

(a). = ).

Therefore, for identical characteristic lengths

43)

(k c)avg — 0'7?

) 2 44
(h vz))avg ( )

and

Qe _o4p

vp

(45)

Thus, once the vertical flat plate problem was
solved, heat transfer results were transferred
directly to the horizontal cylinder or vice versa.

SOLUTION OF EQUATIONS

The reduced differential equations for the
plate and cylinder, equations (19) and (20) were
identical. They were solved numerically by the
Runge-Kutta [11] method on a Datatron 204
digital computer for the cases where: (a) pro-
perties were constant, (b} specific heat and
bouyant force were variable, and (c) specific heat
and density were variable. Equations for the two
former cases were easily derived from equations
(19) and (20). The calculations were performed
for water at two different pressure levels, 2800
and 3100 Ib/in The critical pressure for water
is thought to be slightly above 3200 1b/in2,

The increments in the independent variable
used in the Runge-Kutta method were 0-01 and
0-05 at the low- and high-pressure levels,
respectively. It was observed that decreasing the
interval from 0-1 to 0-01 changed the results for
§' at 5 equal to zero by less than 5 per cent.

Initial conditions on velocity and temperature
and their derivatives with respect to 5 were
required for the computer. Since the boundary
conditions in this problem were mixed, that is,

three were given at 5 equal to zero and three at
7s, as indicated in equation (21), it was necessary
to estimate {” and & initially. The initial estimate
was then refined until £ and § went to zero at
n equal to n, and at the same time equation (21)
was satisfied. It was considered adequate to
satisfy the last of equations (21) within -5
per cent; since, this introduced at most an error
of from 1 to 2 per cent in 8 at » equal to zero.

Variable properties and their first and second
derivatives with respect to temperature were
tabulated and stored in the computer for each
0-01 interval of the dimensionless temperature
excess. A linear interpolation was used for values
between those stored.

Saturation and density data were obtained
from Keenan and Keyes [12]. For densities at
temperatures higher than the tabulated values,
the data from Keenan and Keyes was faired into
the ideal-gas equation of state. This would
introduce at most an error of about 3 per cent
excluding the inaccuracy of values in the table
to which values were faired. Values for dp/df
and d%p/d#? were obtained numerically from a
plot of p vs. 6. Values of dp/df and d2p/d6? at
6 =000 and 0 =100 were extrapolated.
Numerical evaluation such as this was not
highly accurate, but gave a good approximation.
The specific heat was also taken from Keenan
and Keyes [12], and data for temperatures
beyond those given in the reference were extra-
polated according to the curves given in the
reference. The viscosity and thermal conduc-
tivity were taken from Dsrjinskogo [13], and
data for temperatures beyond those listed in the
tables were extrapolated according to the curves
given in the reference. At all times, interpolations
between given points were taken linearly. In
those cases where properties were considered
constant they were evaluated at the arithmetic
mean wall and saturation temperature.

RESULTS

The effects of considering variable properties
at pressures approaching the critical pressure
were illustrated by the results obtained from the
solution of equations (19) and (20) for the three
specified cases. The significant results are
presented in Table 1. Table 2 presents a com-
parison of results obtained considering: (1) all
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Table 1. Significant results
Compressible % Incompressible < All properties constant
! ! | | |
P . 0O , (de) ! , : (do) ,0 , d())
. ] - m e — N roi : ax | -
(Ib/in?) 1 (°F) ns ' max | dn wl! s ‘ max i &), by, P j ns ‘ {max ( @7 )
I } i
2800 250 139 | 017 | 076 096 025 1-14 ’ 092 | 126 127 ‘ 0181 ' 0-88
500 164 | 019 | 067 1-04 035 109 . 132 [0 143 - 0233 079
¢ 1000 1-84 | 021 062 | 114 047 104 | 23 L1090 | 160 . 0285 073
3100 | 250 235 | 0093, 048 | : . 1.8 | 145 | 1137 0214 084
L5500 283 | 0103 041 ; 23 f i0 § 1-56 ;. 0271 075
¢ 1000 315 | 0113 039 : 38 | 088 | 169 10302 071
i ’ 5 i a ‘

properties constant; (2) variable specific heat
with density variations considered only in the
evaluation of the bouyant force, and (3) com-
pressible flow with variable specific heat. The
comparisons of heat transfer, maximum velocity
and film thickness were made according to the
following. Since

g=—k oa_ _ kB¢, x‘”*‘d—g
dn

o (46)

for the same wall to liquid temperature difference
and the same value of x,

4 _ {adbjdy)}

47

was used to compare the heat transfer as calcu-
lated by constant property and variable property
analyses. Also since

u=41r8 2p (48)
Psat
and
— Y
e = €1 ey (49)

for the same wall-to-liquid temperature differ-
ence and the same value of x,
Umax Pep (W_C'_1_)2 {'max

(tmax) cp Psat \Cep

(C’max) [ 4

(50)
and

8 Cep 7o
= Cfop 0 51)
Scz: Cy ("16)01} (

were used to compare the maximum velocity and
film thickness, respectively, as calculated by the
three methods.

It was of interest to note that if at a given
pressure u/umax was plotted against y/8, the data
fell very close to a single curve no matter what
the wall temperature, as shown in Fig. 2. If data
for different pressures were compared in this
matter, the position of the maximum velocity
was seen to vary as shown in Fig. 3. For constant
properties the maximum velocity occurs at
/8 =1/2. The shifting of the velocity maximum
wasnot easily explained. However, if inertia terms
were neglected in equation (6), (pz — p)/p was
assumed to decrease linearly from the wall to the

Table 2. A comparison of results

‘ Compressible t Incompressible
i i ;

P . 6 | g & tmx 8 g 3

W) CF) | g, ulnare) | S - G B
H ! . .

2800 Z 250 | 096 | 061 098 | 166 066
| 500 | 098 @ 047 099 | 16 062
11000 | 104 | 037 094 | 163 . 059

3100 | 250 | 065 | 023 | 155
‘ 500 | 064 | 017 | 1-57 |
| 1000 l 063 | 0145 | 153 |
| H i

liquid-vapor interface, and other properties
were considered constant, it was seen that the
velocity maximum should be shifted in the
direction indicated.

As seen in Table 2, the effect of considering
compressible flow was to decrease the maximum
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F16. 2. Dimensionless velocity distribution for water
vapor, P = 3100 Ib/in?
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Fic. 3. Comparison of dimensionless velocity
distributions

velocity in the film. This would tend to offset the
increase in shear stress at the liquid-vapor
interface caused by the shifting of the maximum
velocity.

The temperature profiles at three different
wall-to-liquid temperature differences at 2800
and 3100 Ib/in? are shown in Figs. 4 and 5,
respectively. Note that if the compressible-flow
temperature profiles for the same value of

Y

¢,O/h;, are plotted against y/8, the curves
are identical as shown in Fig. 6.

The effect on the temperature profile of con-
sidering a variable specific heat and bouyant
force but otherwise incompressible flow is
shown in Fig. 7. The profiles for only one wall-
to-liquid temperature difference are shown, the
effect being the same for all other cases investi-
gated.

The effect of considering the vapor as incom-
pressible while taking into account the variation
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F1G. 4. Dimensionless temperature distribution in the
vapor layer considering variable properties, water at
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of specific heat and bouyant force was to
increase the heat transfer by about 60 per cent at
2800 1b/in%, as shown in Table 2. When com-
pressible flow as well was considered, the
variable-property analysis gave no significantly
different results than the constant-property
analysis at 2800 Ib/in?, provided the properties
were evaluated at the mean temperature.

At 3100 Ib/in? the decrease in film velocity due
to considering compressible flow increased the
film thickness appreciably. The effect was to

P. W. McFADDEN and R. J. GROSH

decrease the heat transfer compared to that
expected with a constant-property analysis.

CONCLUSION

The results of this investigation showed that
the heat transfer as calculated by the constant-
property method did not always agree with the
heat transfer as calculated by the variable-~
property methods. For water at 2800 lb/in* the
consideration of compressible flow and variable
specific heat did not appreciably change the heat
transfer from that calculated by assuming
constant properties, provided the constant
properties were evaluated at the arithmetic mean
film temperature. At 3100 Ib/in%, however, the
heat transfer as calculated by assuming constant
properties was from 54 to 59 per cent greater
than the heat transfer as calculated by consider-
ing compressible flow and variable specific heat.

The method of considering variable specific
heat while density variations were used only in
the evaluation of the bouyant force was not
valid. The variable specific heat tends to increase
the wall heat transfer; the variable density
thickens the vapor layer and thus tends to
decrease the heat transfer.

At 2800 and 3100 Ib/in? radiation plays a more
important role in film boiling than does the
consideration of variable properties.

Actually, 3100 Ib/in? is still very far from the
critical pressure. It is felt that as the critical
pressure is approached even more closely, the
role that variable properties play in film-boiling
heat transfer will become increasingly important.
The work required near the critical pressure can
not be completed, however, until more accurate
property values in this region are available.
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